Exponents and bounds for uniform spanning trees in d dimensions.

نویسنده

  • N Read
چکیده

Uniform spanning trees are a statistical model obtained by taking the set of all spanning trees on a given graph (such as a portion of a cubic lattice in d dimensions), with equal probability for each distinct tree. Some properties of such trees can be obtained in terms of the Laplacian matrix on the graph, by using Grassmann integrals. We use this to obtain exact exponents that bound those for the power-law decay of the probability that k distinct branches of the tree pass close to each of two distinct points, as the size of the lattice tends to infinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

Spanning trees on graphs and lattices in d dimensions

The problem of enumerating spanning trees on graphs and lattices is considered. We obtain bounds on the number of spanning trees NST and establish inequalities relating the numbers of spanning trees of different graphs or lattices. A general formulation is presented for the enumeration of spanning trees on lattices in d 2 dimensions, and is applied to the hypercubic, body-centred cubic, face-ce...

متن کامل

2 4 M ay 2 00 7 Infinite volume limit of the Abelian sandpile model in dimensions d ≥ 3 Antal

We study the Abelian sandpile model on Z. In d ≥ 3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure μ, and study ergodic properties of this process. The main techniques we use are a connection between the st...

متن کامل

The Component Graph of the Uniform Spanning Forest: Transitions in Dimensions

We prove that the uniform spanning forests of Z and Z have qualitatively different connectivity properties whenever ` > d ≥ 4. In particular, we consider the graph formed by contracting each tree of the uniform spanning forest down to a single vertex, which we call the component graph. We show that the set of ubiquitous subgraphs of the component graph changes whenever the dimension changes and...

متن کامل

Geometry of uniform spanning forest omponents in high dimensions

We study the geometry of the component of the origin in the uniform spanning forest of Zd and give bounds on the size of balls in the intrinsic metric.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 70 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004